THE BOUNDEDNESS OF TRAJECTORIES IN THE NEIGHBOURHOOD OF THE ORBITALLY UNSTABLE PERIODIC MOTION OF A HAMILTONIAN SYSTEM \dagger

A. P. MARKEYEV
Moscow
e-mail: markeev@ipmnet.ru
(Received 17 April 2001)

An autonomous Hamiltonian system with two degrees of freedom is considered. It is assumed that a periodic motion and a secondorder resonance (parametric resonance) exist in the system. The unperturbed periodic motion is orbitally stable or unstable. However, even in the case of instability, the trajectories of the perturbed motion may remain in a bounded neighbourhood of the unperturbed trajectory for all values of the time. An asymptotic estimate of the size of this neighbourhood is given for the case when the Hamiltonian depends on a small parameter. The results are applied to the problem of the non-local stability of fast planar rotations of a heavy rigid body in the Kovalevskaya case, and to the problem of the stability of periodic Poincaré motions of the first kind in the restricted three-body problem, for one special case of second-order resonance. © 2002 Elsevier Science Ltd. All rights reserved.

1. STATEMENT OF THE PROBLEM

Consider an autonomous Hamiltonian system with two degrees of freedom. Suppose it has a periodic motion and the IIamiltonian Γ is analytic in the neighbourhood of a trajectory corresponding to that motion. We may assume without loss of generality that the period is 2π.

Canonically conjugate variables ξ_{i} and $\eta_{i}\left(\xi_{i}\right.$ are the coordinates and η_{i} are the momenta; $i=1,2$) can be chosen [1] in such a way that the solution corresponding to unperturbed motion may be written in the form

$$
\begin{equation*}
\xi_{1}(t)=t+\xi_{1}(0), \quad \eta_{1}=\xi_{2}=\eta_{2}=0 \tag{1.1}
\end{equation*}
$$

and the Hamiltonian will be a 2π-periodic function of the coordinate ξ_{1}.
The problem of the orbital stability of the unperturbed periodic motion is equivalent to the problem of stability with respect to perturbations of the variables $\eta_{1}, \xi_{2}, \eta_{2}$.

Suppose the Hamiltonian depends on a parameter ε and is analytic for sufficiently small values of that parameter. We shall also assume that when $\varepsilon=0$ the function Γ is independent of ξ_{1}.

Two characteristic exponents of the linearized equations of perturbed motion will always vanish. As regards the two others, we shall assume that when $\varepsilon=0$ they are pure imaginary numbers $\pm i \omega$, where 2ω is close to an odd integer $2 n+1$. Let us put

$$
\begin{equation*}
2 n+1-2 \omega=2 \varepsilon \alpha \tag{1.2}
\end{equation*}
$$

In the case of this second-order (parametric) resonance, the unperturbed periodic motion may be orbitally stable or unstable, with instability possibly observed already in the linearized equations of perturbed motion. However, this instability may turn out to be only local, since the trajectories of the perturbed motion do not necessarily depart to an unbounded distance from the trajectory of the unperturbed motion. They may remain perpetually in some bounded (though not infinitesimal) neighbourhood of that trajectory. The main aim of this paper is to derive estimates for the size of that neighbourhood.

2. THE NORMAL FORM OF THE HAMILTONIAN OF PERTURBED MOTION AND ITS SIMPLIFICATION

Let us express the Hamiltonian Γ of perturbed motion as a series in powers of $\eta_{1}, \xi_{2}, \eta_{2}, \varepsilon$. Then a suitable canonical change of variables $\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}, \rightarrow \varphi_{1}, r_{1}, q_{2}, p_{2} 2 \pi$-periodic in φ_{1} and analytic in $\eta_{1}, \xi_{2}, \eta_{2}, \varepsilon$, may be used to annihilate all non-resonance terms in the part of the Hamiltonian that is quadratic in q_{2} and p_{2}, completely annihilating terms of the third and also (when $\varepsilon=0$) the fifth degree in $\left|r_{1}\right|^{1 / 2}, q_{2}, p_{2}$, and reducing terms of the fourth degree to a form such that, when $\varepsilon=0$, they depend only on r_{1} and on the combination $q_{2}^{2}+p_{2}^{2}$. The Hamiltonian of the perturbed motion, normalized in this way, will be denoted by H. It has the following form (see [2]).

$$
\begin{align*}
& H=r_{1}+1 / 2 \lambda\left(q_{2}^{2}+p_{2}^{2}\right)+1 / 2 \varepsilon\left[x_{1} \sin 2 \varphi-x_{2} \cos 2 \varphi\right]\left(q_{2}^{2}-p_{2}^{2}\right)+\varepsilon\left[x_{1} \cos 2 \varphi+\right. \\
& \left.+x_{2} \sin 2 \varphi\right] q_{2} p_{2}+c_{20} r_{1}^{2}+1 / 2 c_{11} r_{1}\left(q_{2}^{2}+p_{2}^{2}\right)+1 / 4 c_{02}\left(q_{2}^{2}+p_{2}^{2}\right)^{2}+\sum_{k=1}^{\infty} \varepsilon^{k} H_{4}^{(k)}+ \\
& +\sum_{k=1}^{\infty} \varepsilon^{k} H_{5}^{(k)}+O_{6} \tag{2.1}
\end{align*}
$$

where $\varphi=1 / 2(2 n+1) \varphi_{1}, H_{4}^{(k)}$ and $H_{5}^{(k)}$ are forms of degree four and five in $\left|r_{1}\right|^{1 / 2}, q_{2}, p_{2}$ whose coefficients are 2π-periodic in φ_{1}, and O_{6} denotes the totality of terms of degree at least six in $\left|r_{1}\right|^{1 / 2}, q_{2}, p_{2}$. The quantities $\lambda, x_{1}, x_{2}, c_{20}, c_{11}, c_{02}$ are constant coefficients, of which λ, x_{1}, x_{2} are represented by convergent series

$$
\lambda=\omega+\varepsilon \lambda^{(1)}+\varepsilon^{2} \lambda^{(2)}+\ldots, \quad x_{i}=x_{i}^{(1)}+\varepsilon x_{i}^{(2)}+\ldots, \quad i=1,2
$$

Formulae defining the quantities $c_{i j}$ and $x_{i}^{(1)}$ in terms of the expansion coefficients of the initial Hamiltonian Γ were obtained in [2].

If we now apply the canonical transformation

$$
\begin{align*}
& \varphi_{1}=\tilde{\varphi}_{1}, \quad r_{1}=\tilde{r}_{1}-1 / 4(2 n+1)\left(\tilde{q}_{2}^{2}+\tilde{p}_{2}^{2}\right) \tag{2.2}\\
& q_{2}=\tilde{q}_{2} \cos \varphi+\tilde{p}_{2} \sin \varphi, \quad p_{2}=-\tilde{q}_{2} \sin \varphi+\tilde{p}_{2} \cos \varphi
\end{align*}
$$

we obtain a Hamiltonian

$$
\begin{aligned}
& H=\tilde{r}_{1}-1 / 2 \varepsilon \delta\left(\tilde{q}_{2}^{2}+\tilde{p}_{2}^{2}\right)+1 / 2 \varepsilon\left[2 x_{1} \tilde{q}_{2} \tilde{p}_{2}+x_{2}\left(\tilde{p}_{2}^{2}-\tilde{q}_{2}^{2}\right)\right]+a_{20} \tilde{r}_{1}^{2}+1 / 2 a_{11} \tilde{r}_{1}\left(\tilde{q}_{2}^{2}+\tilde{p}_{2}^{2}\right)+ \\
& +1 / 4 a_{02}\left(\tilde{q}_{2}^{2}+\tilde{p}_{2}^{2}\right)^{2}+\sum_{k=1}^{\infty} \varepsilon^{k} \tilde{H}_{4}^{(k)}+\sum_{k=1}^{\infty} \varepsilon^{k} \tilde{H}_{5}^{(k)}+O_{6}
\end{aligned}
$$

where $\tilde{H}_{4}^{(k)}$ and $\tilde{H}_{5}^{(k)}$ are the forms $H_{4}^{(k)}$ and $H_{5}^{(k)}$ of (2.1), expressed in terms of the new variables, and

$$
\begin{array}{ll}
\delta=\alpha-\lambda^{(1)}-\varepsilon \lambda^{(2)}-\ldots, & a_{20}=c_{20} \\
a_{11}=c_{11}-(2 n+1) c_{20}, & a_{02}=c_{20}(n+1 / 2)^{2}-c_{11}(n+1 / 2)+c_{02}
\end{array}
$$

One more canonical transformation (with valence $a_{02}(\varepsilon x)^{-1}$)

$$
\begin{align*}
& \tilde{\varphi}_{1}=\sigma w_{1}, \quad \tilde{r}_{1}=\varepsilon x\left|a_{02}\right|^{-1} l_{1} \tag{2.3}\\
& \tilde{q}_{2}=\left(2 \varepsilon x\left|a_{02}\right|^{-1} \rho_{2}\right)^{1 / 2} \sin \left(\psi+\psi_{0}\right), \quad \tilde{p}_{2}=\left(2 \varepsilon x\left|a_{02}\right|^{-1} \rho_{2}\right)^{1 / 2} \cos \left(\psi+\psi_{0}\right)
\end{align*}
$$

where

$$
\begin{aligned}
& x=\left(x_{1}^{(1)^{2}}+x_{2}^{(1)^{2}}\right)^{1 / 2}, \quad x_{1}^{(1)}=x \sin 2 \psi_{0}, \quad x_{2}^{(1)}=x \cos 2 \psi_{0}, \quad \psi=\sigma \theta_{2}+1 / 4(1-\sigma) \pi \\
& \sigma=\operatorname{sign} a_{02}
\end{aligned}
$$

and a change to a new independent variable $\rho=x t$ lead to the equations of perturbed motion with Hamiltonian

$$
\begin{equation*}
H=H^{(0)}\left(I_{1}\right)+\varepsilon H^{(1)}\left(I_{1}, \rho_{2}, \theta_{2}\right)+\varepsilon^{2} H^{(2)}\left(I_{1}, \rho_{2}, w_{1}, \theta_{2} ; \varepsilon^{1 / 2}\right) \tag{2.4}
\end{equation*}
$$

where

$$
\begin{align*}
& H^{(0)}=\sigma x^{-1} I_{1}, \quad H^{(1)}=-v \rho_{2}+\rho_{2} \cos 2 \theta+\rho_{2}^{2}+b_{11} I_{1} \rho_{2}+b_{20} I_{1}^{2} \tag{2.5}\\
& v=\sigma\left(\alpha-\lambda^{(1)}\right) x^{-1}, \quad b_{11}=a_{11} a_{02}^{-1}, \quad b_{20}=a_{20} a_{02}^{-1}
\end{align*}
$$

Note that the quantity I_{1} may have any sign, but $\rho_{2} \geqslant 0$. The function $H^{(2)}$ is 4π-periodic in w_{1}, 2π-periodic in θ_{2} and is analytic in all its arguments for $\rho_{2}>0$.

If $-1<v \leqslant 1$, the periodic motion (1.1) is orbitally unstable; if $v \leqslant-1$ or $v>1$, it is stable [2].

3. THE APPROXIMATE SYSTEM

If the last term is dropped in Hamiltonian (2.4), we arrive at an approximate system with Hamiltonian $H^{(0)}+\varepsilon H^{(1)}$. In this system I_{1} is constant $\left(I_{1}=I_{1}(0)\right)$ and the variables θ_{2} and ρ_{2} are described by the equations

$$
\begin{equation*}
\frac{d \theta_{2}}{d \tau}=\varepsilon \frac{\partial \gamma}{\partial \rho_{2}}, \quad \frac{d \rho_{2}}{d \tau}=-\varepsilon \frac{\partial \gamma}{\partial \theta_{2}} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=-\tilde{v} \rho_{2}+\rho_{2} \cos 2 \theta_{2}+\rho_{2}^{2}, \quad \tilde{v}=v-b_{11} I_{1} \tag{3.2}
\end{equation*}
$$

The quantity v in Hamiltonian (2.4) may be treated as a parameter characterizing the "resonance mismatch." The quantity \bar{v} in the function (3.2) also plays the role of a resonance mismatch. However, unlike v, which depends only on the parameters of the system being investigated, \tilde{v} also depends on the initial data (on $I_{1}(0)$). If $b_{11} \neq 0$, the resonance mismatch may be increased, decreased or even completely annihilated by a suitable choice of $I_{1}(0)$.

The system of equations (3.1) has been studied in detail previously (see [3, 4] and the references listed there). Its trajectories may be qualitatively different for different values of the parameter \bar{v}, that is, the presence of a degree of freedom corresponding to the variables w_{1} and I_{1} exerts a considerable influence on the behaviour of the solutions $\theta_{2}(\tau)$ and $\rho_{2}(\tau)$ of system (3.1).

Phase portraits of system (3.1) in the x_{1}, x_{2} plane, where $x_{1}=\left(2 \rho_{2}\right)^{1 / 2} \cos \theta_{2}, x_{2}=\left(2 \rho_{2}\right)^{1 / 2} \sin \theta_{2}$, are shown in Fig. 1(a-c), for the cases $\bar{v} \leqslant-1,-1<\bar{v} \leqslant 1, \bar{v}\rangle 1$, respectively. Depending on the value of

Fig. 1
\bar{v}, the system may have one, three or five singular points. The singular point for which $x_{1}=x_{2}=0$ exists for any value of $\overline{\mathrm{v}}$. It corresponds to the unperturbed periodic motion (1.1).

In what follows we will be interested only in domains of the x_{1}, x_{2} plane filled by trajectories encircling all the singular points of system (3.1). For any value of \tilde{v}, these trajectories correspond to positive values of the constant h of the integral

$$
\begin{equation*}
\gamma\left(\rho_{2}, \theta_{2}\right)=h \tag{3.3}
\end{equation*}
$$

Previous analysis [3, 4] implies that, if the following condition holds at $\tau=0$

$$
\begin{equation*}
\rho_{2}(0)<1 / 2\left[\tilde{v}-1+\sqrt{(\tilde{v}-1)^{2}+a}\right] \tag{3.4}
\end{equation*}
$$

then for all $\tau \geqslant 0$ we have the inequality

$$
\begin{equation*}
\rho_{2}(\tau)<1 / 2\left[\tilde{v}+1+\sqrt{(\bar{v}+1)^{2}+a}\right] \tag{3.5}
\end{equation*}
$$

The quantity a in inequalities (3.4) and (3.5) is a positive parameter ($a=4 h$, where h is the constant of the integral (3.3) corresponding to a closed trajectory encircling all the singular points of system (3.1); the right-hand sides of (3.4) and (3.5) are the minimum and maximum values of ρ_{2} on that trajectory).

4. ACTION-ANGLE VARIABLES

Let us return now to the exact equations of perturbed motion as defined by Hamiltonian (2.4), writing it in terms of the new variables I_{i} and $w_{i}(i=1,2)$, which are action-angle variables for the approximate system. Since w_{1} is a cyclic coordinate in the approximate system, one pair of such variables is I_{1} and w_{1}. Denote Hamiltonian (2.4), written in terms of the variables I_{i} and w_{i}, by F

$$
\begin{equation*}
F=F^{(0)}\left(l_{1}\right)+\varepsilon F^{(1)}\left(I_{1}, I_{2}\right)+\varepsilon^{2} F^{(2)}\left(I_{1}, l_{2}, w_{1}, w_{2} ; \varepsilon^{1 / 2}\right) \tag{4.1}
\end{equation*}
$$

where $F^{(0)}$ is the function $H^{(0)}$ of (2.5)

$$
F^{(1)}=b_{20} I_{1}^{2}+\Phi\left(I_{1}, I_{2}\right)
$$

and Φ is the function (3.2) written in terms of the new variables; it is the inverse of the function

$$
\begin{equation*}
I_{2}(h)=\frac{1}{2 \pi} \oint \rho_{2}\left(\theta_{2}, h\right) d \theta \tag{4.2}
\end{equation*}
$$

where ρ_{2} is the value of the momentum ρ_{2} on trajectories of the approximate system for $h>0$; the dependence of ρ_{2} on I_{1} is not shown in (4.2).

The function F is 4π-periodic in w_{1} and 2π-periodic in w_{2}; for $I_{2}>0$ it is analytic in $I_{1}, I_{2}, w_{1}, w_{2}, \varepsilon^{3 / 2}$.

5. THE VARIABLES I_{1} AND I_{2} HAVE NO EVOLUTION

When $\varepsilon=0$ the Hamiltonian (4.1) depends only on one of the "action" variables (namely, I_{1}), so that we have proper degeneracy [5]. When $0<\varepsilon \ll 1$, however, the degeneracy is removed, and the variables I_{1} and I_{2} in the perturbed system always remain near their initial values. Indeed, one can verify (see below) that Hamiltonian (4.1) satisfies the conditions

$$
\begin{equation*}
\frac{\partial F^{(0)}}{\partial I_{1}} \neq 0, \quad \frac{\partial F^{(1)}}{\partial I_{2}} \neq 0, \quad \frac{\partial^{2} F^{(1)}}{\partial I_{2}^{2}} \neq 0 \tag{5.1}
\end{equation*}
$$

and therefore [5], for most initial data, the motion in the perturbed system will be conditionally periodic. Only a fraction $O\left(\exp \left(-c_{1} \varepsilon^{-1}\right)\right)$ where $c_{1}=$ const >0, of the phase space is not filled by conditionally periodic trajectories. Moreover, for all initial data the quantities $I_{i}(\tau)(i=1,2)$ are close to their initial values

$$
\begin{equation*}
\left|I_{i}(\tau)-I_{i}(0)\right|<c_{2} \varepsilon \quad\left(c_{2}=\text { const }\right) \tag{5.2}
\end{equation*}
$$

The truth of the first condition of (5.1) follows at once from (2.5) and (4.1), since $\partial F^{(0)} / \partial I_{1}=$ $\sigma x^{-1} \neq 0$. The second inequality in (5.1) is also true, because $\partial F^{(1)} / \partial I_{2}$ is the frequency, divided by ε, of motion along the closed trajectory considered in Fig. 1, which is, of course non-zero. As regards $\partial^{2} F^{(1)} \partial I_{2}^{2}$ in the third condition of (5.1), it follows from (3.3) and (4.2) that

$$
\begin{equation*}
\frac{\partial^{2} F^{(1)}}{\partial I_{2}^{2}}=\frac{1}{2 \pi}\left(\frac{\partial F^{(1)}}{\partial I_{2}}\right)^{3} \phi\left(\frac{\partial \gamma}{\partial \rho_{2}}\right)^{-3} \frac{\partial^{2} \gamma}{\partial \rho_{2}^{2}} d \theta_{2} \tag{5.3}
\end{equation*}
$$

The integrand in (5.3) is positive on the closed trajectories under consideration, which encircle all the singular points of system (3.1) in Fig. 1. Hence it follows that the third condition of (5.1) is also true. This proves the assertion that the quantities I_{1} and I_{2} have no evolution.

6. ESTIMATES OF $r_{1}(t)$ AND $q_{2}^{2}(t)+p_{2}^{2}(t)$ IN THE CASE WHEN $b_{11}=0$

It follows from inequality (5.2) and formulae (2.2) and (2.3) for the replacement of variables that, for all $t>0$

$$
\begin{equation*}
r_{1}+1 / 4(2 n+1)\left(q_{2}^{2}+p_{2}^{2}\right)=\varepsilon x\left|a_{02}\right|^{-1} I_{1}=\varepsilon x\left|a_{02}\right|^{-1}\left(I_{1}(0)+O(\varepsilon)\right) \tag{6.1}
\end{equation*}
$$

Hence we may conclude that $r_{1}+1 / 4(2 n+1)\left(q_{2}^{2}+p_{2}^{2}\right)$ is "almost an integral" of the equations of perturbed motion, in the sense that for all $t>0$ it differs from its initial value by a quantity of order of magnitude at least two in ε, provided that $r_{1}(0)$ and $q_{2}^{2}(0)+p_{2}^{2}(0)$ are of order of magnitude at least one.

With relation (6.1) available, the derivation of an estimate for the size of the neighbourhood in which there are trajectories of perturbed motion reduces to finding estimates for the quantity $q_{2}^{2}(t)+p_{2}^{2}(t)$.

We will first consider the case when the coefficient b_{11} in Hamiltonian (2.4) vanishes. In that case, by the second equality of (3.2), we have $\bar{v}=v$. Then, taking into account that $I_{2}(t)=I_{2}(0)+O(\varepsilon)$ for all initial data, (see inequality (5.2)), we deduce from formulae (2.3) and inequalities (3.4) and (3.5) that if

$$
\begin{equation*}
q_{2}^{2}(0)+p_{2}^{2}(0)<\varepsilon x\left|a_{02}\right|^{-1}\left[v-1+\sqrt{(v-1)^{2}+a}-\delta_{1}\right] \tag{6.2}
\end{equation*}
$$

then for all $t \geqslant 0$

$$
\begin{equation*}
q_{2}^{2}(t)+p_{2}^{2}(t)<\varepsilon x\left|a_{02}\right|^{-1}\left[v+1+\sqrt{(v+1)^{2}+a}+\delta_{2}\right] \tag{6.3}
\end{equation*}
$$

where δ_{i} are positive numbers of the same order of magnitude as $\chi=\varepsilon^{1-\beta}(0<\beta<1)$.
Inequalities (6.2) and (6.3) yield a one-parameter family of cstimates. The parameter is the number a.

7. THE NON-LOCAL STABILITY OF FAST PLANAR ROTATIONS OF A RIGID BODY IN THE KOVALEVSKAYA CASE

Consider a rigid body of weight $m g$ rotating about a fixed point O. The axes of a coordinate system $O x y z$ fixed in the body are directed along the principal axes of inertia about O. The corresponding principal moments of inertia are denoted by A, B and C. Let the geometry of the masses of the body correspond to the Kovalevskaya case. Then, setting $B=C=2 A$, we may assume that the centre of gravity is on the $O z$ axis. The distance from the centre of gravity to the fixed point O is denoted by l.

Let us assume that the projection of the angular momentum of the body onto the vertical is zero. The body may perform pendulum-like rotations about the $O x$ axis, which is in a fixed horizontal position. Suppose the mean angular velocity Ω of this rotation is so large that the dimensionless quantity $\varepsilon=m g l /\left(A \Omega^{2}\right)$ may be considered to be a small parameter. It has been shown $[6,7]$ that in the Kovalevskaya case such planar rotations of a rigid body are orbitally unstable. An estimate for the size of the neighbourhood of the planar rotation in which the trajectories of the perturbed motion always remain may be obtained, by using the fact that the equations of motion are completely integrable (using
the Kovalevskaya integral). Here, to illustrate the algorithm of Section 7, we will derive this estimate for sufficiently small ε.

As canonical conjugate variables we take Andoyer variables [8]. The generalized momenta, transfomed to dimensionless form using the factor $A \Omega$, are denoted by R_{1} and R_{2} (R_{1} is the absolute value of the angular momentum and R_{2} its projection onto the $O z$) axis; the corresponding generalized coordinates are denoted by ψ_{1} and ψ_{2}, and the independent variable is taken to be $\tau=\Omega t$. The Hamiltonian has the form

$$
\begin{equation*}
H=1 / 4\left(R_{1}^{2}-R_{2}^{2}\right)\left(1+\sin ^{2} \psi_{2}\right)+1 / 4 R_{2}^{2}-\varepsilon \sqrt{1-R_{2}^{2} / R_{1}^{2}} \cos \psi_{1} \tag{7.1}
\end{equation*}
$$

In the aforementioned rotations of the body, $\psi_{2}=\pi / 2, R_{2}=0$, and the variation of the variables ψ_{1} and R_{1} is described by equations with Hamiltonian $h_{0}=1 / 2 R_{1}^{2}-\varepsilon \cos \psi$. In terms of the variables x_{1} and X_{1} introduced [4] by the canonical transformation

$$
\psi_{1}=x_{1}+\varepsilon X_{1}^{-2} \sin x_{1}+O\left(\varepsilon^{2}\right), \quad R_{1}=X_{1}+\varepsilon X_{1}^{-1} \cos x_{1}+O\left(\varepsilon^{2}\right)
$$

we have $h_{0}=1 / 2 X_{1}^{2}+O\left(\varepsilon^{2}\right)$, and the planar rotation of the body is given by the equations

$$
x_{1}(\tau)=\left(1+O\left(\varepsilon^{2}\right)\right) \tau+x_{1}(0), \quad X_{1}=1, \quad \Psi_{2}=\pi / 2 \quad R_{2}=0
$$

We introduce perturbations of Y_{1}, x_{2}, Y_{2} by the formulae

$$
X_{1}=1-Y_{1}, \quad \Psi_{2}=\pi / 2+x_{2}, \quad R_{2}=-Y_{2}
$$

The Hamiltonian of the perturbed motion may be expressed as a series

$$
\begin{equation*}
H=Y_{1}+\frac{1}{4}\left(x_{2}^{2}+Y_{2}^{2}\right)+\frac{1}{2} \varepsilon \cos x_{1}\left(x_{2}^{2}-Y_{2}^{2}\right)-\frac{1}{12}\left(x_{2}^{4}+3 x_{2}^{2} Y_{2}^{2}+6 Y_{1} x_{2}^{2}+6 Y_{1}^{2}\right)+\ldots \tag{7.2}
\end{equation*}
$$

where the dots stand for the totality of terms of degree more than five in $\left|Y_{1}\right|^{1 / 2}, x_{2}, Y_{2}$. Terms of order not less than the second and first in ε, which will not be needed in what follows, are omitted from the terms of the second and fourth degree, respectively, in expansion (7.2). It is obvious from (7.2) that there is a second-order resonance; in the notation of Section 1 , we have $\omega=1 / 2, n=0, \alpha=0$.

A canonical change of variables via the formulae

$$
\begin{aligned}
& x_{1}=x_{1}^{\prime}, \quad Y_{1}=Y_{1}^{\prime}-1 / 4 \varepsilon \cos x_{1}^{\prime}\left(x_{2}^{\prime 2}-Y_{2}^{\prime 2}\right) \\
& x_{2}=x_{2}^{\prime}-1 / 2 \varepsilon \sin x_{1}^{\prime} Y_{2}^{\prime}, \quad Y_{2}=Y_{2}^{\prime}-1 / 2 \varepsilon \sin x_{1}^{\prime} x_{2}^{\prime}
\end{aligned}
$$

reduces the first three terms in (7.2) (which correspond to the linearized equations of perturbed motion) to normal form. One further non-linear change of variables $x_{1}^{\prime}, x_{2}^{\prime}, Y_{1}^{\prime}, Y_{2}^{\prime} \rightarrow \varphi_{1}, q_{2}, r_{1}, p_{2}$, close to the identical transformation, of the same type of Birkhoff's transformation, yields the normal form of the term of fourth degree in $\left|Y_{1}^{\prime}\right|^{1 / 2}, x_{2}^{\prime}, Y_{2}^{\prime}$. As a result we arrive at Hamiltonian (2.1) with

$$
x_{1}^{(1)}=0, \quad x_{2}^{(1)}=-1 / 2, \quad \lambda^{(1)}=0, \quad c_{20}=c_{11}=2 c_{02}=-1 / 2 .
$$

By the formulae of Section 2, we find that $x=1 / 2, v=0, b_{11}=0$. Also, by relations (6.2) and (6.3), we see that if for $t=0$

$$
q_{2}^{2}(0)+p_{2}^{2}(0)<4 \varepsilon\left(\sqrt{1+a}-1-\delta_{1}\right)
$$

then, for all t, we have the estimate

$$
q_{2}^{2}(t)+p_{2}^{2}(t)<4 \varepsilon\left(\sqrt{1+a}+1+\delta_{2}\right)
$$

It now follows from (6.1) that

$$
\left|r_{1}(t)-r_{1}(0)\right|<2 \varepsilon(\sqrt{1+a}+O(\chi))
$$

8. ESTIMATES IN THE CASE WHEN $b_{11} \neq 0$

The estimates given by inequalities (6.2) and (6.3) remain valid when $b_{11} \neq 0$, except that v in these inequalities must be replaced by the quantity \tilde{v} defined by the second equality of (3.2).

Taking into consideration that, by inequality (5.2), $I_{1}=I_{1}(0)+O(\varepsilon)$, we may write the second equality of (3.2) in the form $\bar{v}=v-b_{11} I_{1}(0)+O(\varepsilon)$. Using the transformation formulae (2.2) and (2.3) and introducing the notation

$$
\begin{equation*}
r_{1}(t)=\varepsilon x\left|a_{02}\right|^{-1} x(t), \quad q_{2}^{2}(t)+p_{2}^{2}(t)=\varepsilon x\left|a_{02}\right|^{-1} y(t), \quad x(0)=x_{0}, \quad y(0)=y_{0} \tag{8.1}
\end{equation*}
$$

we see that, with an error of order ε,

$$
\begin{equation*}
\tilde{v}=\tilde{v}\left(x_{0}, y_{0}\right)=v-b_{11}\left[x_{0}+1 / 4(2 n+1) y_{0}\right] \tag{8.2}
\end{equation*}
$$

The quantity x may have any sign, but $y \geqslant 0$.
Suppose the parameters of the material system under investigation are given. Consequently, the quantities n, v and b_{11} on the right-hand side of (8.2) are also given. Now fix some positive value of the parameter a and consider the inequality

$$
\begin{equation*}
y_{0}<\tilde{v}-1+\sqrt{(\tilde{v}-1)^{2}+a} \tag{8.3}
\end{equation*}
$$

where \tilde{v} is given by formula (8.2). In the half-plane $y_{0} \geqslant 0$, inequality (8.3) will hold in some domain G. Suppose the initial date are such that $x_{0}=x_{0}^{*}, y_{0}=y_{0}^{*}$, and the point (x_{0}^{*}, y_{0}^{*}) lies in G together with its χ-neighbourhood. It then follows from inequalities (6.2) that for these initial data, for all $t \geqslant 0$, we have

$$
\begin{equation*}
y(t)<v^{*}+1+\sqrt{\left(v^{*}+1\right)^{2}+a}+\delta_{2} \tag{8.4}
\end{equation*}
$$

on the trajectory of perturbed motion, where v^{*} is the value of the function \tilde{v} in (8.2) evaluated at the point $\left(x_{0}^{*}, y_{0}^{*}\right)$.

9. THE QUESTION OF THE BOUNDEDNESS OF THE ORBITS OF ASTEROIDS IN THE HESTIA GAP

The distribution of asteroids according to their mean motions within the main asteroid belt, which lies between the orbits of Mars and Jupiter, is not uniform: there are intervals of distribution in which there are few asteroids or even none at all [9]. These intervals are known as gaps. For these gaps in the asteroid belt, the ratio of the mean motion of the asteroid to the mean motion of Jupiter is approximately a rational number $l: s$. For asteroids in the Hestia gap this ratio is $3: 1$. The number $l-s$ is known as the order of resonance, so that in the case of the asteroids of the Hestia gap one has the kind of resonance studied in this article - second-order resonance.

We shall simulate asteroid orbits by means of periodic Poincaré solutions of the first kind of the restricted circular three-body problem. Following Section 8, we shall estimate the size of the domain in which perturbed orbits are bounded near the unperturbed Poincaré orbits.

The units of measurement will be chosen so that the period of Jupiter's revolution, the distance between the Sun and Jupiter, and the sum of their masses are equal to unity. Jupiter's mass is denoted by ε. When $\varepsilon=0$ the Poincaré orbits become circular orbits of radius R_{0}. For asteroids in the Hestia gap $R_{0}=9^{-1 / 3}=0.48075$. The family of periodic Poincaré solutions depends (see, for example [10]) on one essential parameter h_{1} (the quantity εh_{1} is equal, with an error of order ε^{2}, to the difference between the constants of the energy integral in the Poincaré orbit and in the generating circular orbit). The normal form (2.1) of the Hamiltonian of perturbed motion in the neighbourhood of periodic Poincaré motions at second-order resonance was obtained in [10], where the meaning of the quantities r_{1}, q_{2} and p_{2} was also described. One can say that the perturbations q_{2} and p_{2} characterize the magnitude of the radial displacement and radial velocity, while r_{1} is the magnitude of the perturbation of the transversal velocity of the asteroid in a synodic coordinate system.

Computations using the formulae developed in [10] for the coefficients of the normal form show that

$$
\begin{aligned}
& \lambda=3 / 2+\varepsilon\left(-0.23747+1.62253 h_{1}\right)+O\left(\varepsilon^{2}\right) \\
& x_{1}^{(1)}=0, \quad x_{2}^{(1)}=0.86356, \quad c_{20}=1 / 2 c_{11}=c_{02}=-3.24506
\end{aligned}
$$

Fig. 2
The formulae of Section 2 now yield

$$
a_{20}=-a_{11}=4 a_{02}=-3.24506, \quad x=0.86356, \quad \sigma=-1, \quad b_{11}=-4
$$

and expression (8.2) becomes

$$
\begin{equation*}
\tilde{v}=\tilde{v}\left(x_{0}, y_{0}\right)=v+4 x_{0}+3 y_{0} \tag{9.1}
\end{equation*}
$$

The domain G is defined by relations (8.3) and (9.1). It is illustrated schematically in Fig. 2, with the part of the half-plane $y_{0}=0$ not belonging to G shown hatched. The boundary of G is the straight line $y_{0}=0$ and the hyperbola

$$
x_{0}=-\left(5 y_{0}^{2}+a\right) /\left(8 y_{0}\right)-1 / 4(v-1)
$$

Suppose the initial values of r_{1}, q_{2} and p_{2} are such that the point $\left(x_{0}^{*}, y_{0}^{*}\right)$, where

$$
\begin{equation*}
x_{0}^{*}=0.939445 \varepsilon^{-1} r_{1}(0), \quad y_{0}^{*}=0.939445 \varepsilon^{-1}\left(q_{2}^{2}(0)+p_{2}^{2}(0)\right) \tag{9.2}
\end{equation*}
$$

lies inside the domain G and its distance from the latter's boundary is not less than χ. Then for all $t \geqslant 0$,

$$
q_{2}^{2}(t)+p_{2}^{2}(t)<1.06447 \varepsilon\left[v^{*}+1+\sqrt{\left(v^{*}+1\right)^{2}+a}+\delta_{2}\right]
$$

where v^{*} is the value of the function (9.1) at the point $\left(x_{0}^{*}, y_{0}^{*}\right)$ with coordinates (9.2).
The estimate for $r_{1}(t)$ may now be derived from (6.1).
This research was supported financially by the Russian Ministry of Education (E 00-11.0.28).

REFERENCES

1. BIRKHOFF, G. D., Dynamical Systems. American Mathematical Society, New York, 1927.
2. MARKEYEV, A. P., Investigation of the stability of periodic motions of an autonomous Hamiltonian system in a critical case. Prikl. Mat. Mekh., 2000, 64, 5, 833-847.
3. MARKEYEV, A. P., The behaviour of a non-linear Hamiltonian system with one degree of freedom at the boundary of a parametric resonance domain. Prikl. Mat. Mekh., 1995, 59, 4, 569-580.
4. MARKEYEV, A. P., Parametric resonance and non-linear oscillations of a heavy rigid body in the neighbourhood of its planar rotations. Izv. Akad. Nauk SSSR. MTT, 1995, 5, 34-44.
5. ARNOL'D, V. I., KOZLOV, V. V. and NEISHTADT, A. I., Mathematical Aspects of Classical and Celestial Mechanics (Advances in Science and Technology. Ser. Modern Problems in Mathematics. Basic Trends, Vol. 3). VINITI, Moscow, 1985.
6. MARKEYEV, A. P., On planar and near-planar rotations of a heavy rigid body about a fixed point. Izv. Akad. Nauk SSSR. MTT, 1988, 4, 29-36.
7. MARKEYEV, A. P., The stability of plane motions of a rigid body in the Kovalevskaya case. Prikl. Mat. Mekh., 2001, 65, 1, 51-58.
8. ARKHANGEL'SKII, Yu. A., Analytical Dynamics of a Rigid Body. Nauka, Moscow, 1977.
9. DEMIN, V. G. and ZHURAVLEV, S. G., Asteroids: Origin, Statistics and Evolution (Advances in Science and Technology. Ser. Astronomy, Vol. 15). VINITI, Moscow, 1979.
10. MARKEYEV, A. P., The asymmetry of the position of the Kirkwood gaps in the asteroid ring. Dokl. Ross. Akad. Nauk, 2001, 377, 3, 335-339.
