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An autonomous Hamiltonian system with two degrees of freedom is considered. It is assumed that a periodic motion and a second- 
order resonance (parametric resonance) exist in the system. The unperturbed periodic motion is orbitally stable or unstable. 
However, even in the case of instability, the trajectories of the perturbed motion may remain in a bounded neighbourhood of 
the unperturbed trajectory for all values of the time. An asymptotic estimate of the size of this neighbourhood is given for the 
case when the Hamiltonian depends on a small parameter. The results are applied to the problem of the non-local stability of 
fast planar rotations of a heavy rigid body in the Kovalevskaya case, and to the problem of the stability of periodic Poincart 
motions of the first kind in the restricted three-body problem, for one special case of second-order resonance. 0 2002 Elsevier 
Science Ltd. All rights reserved. 
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1. STATEMENT OF THE PROBLEM 

Consider an autonomous Hamiltonian system with two degrees of freedom. Suppose it has a periodic 
motion and the Hamiltonian I is analytic in the neighbourhood of a trajectory corresponding to that 
motion. We may assume without loss of generality that the period is 27r. 

Canonically conjugate variables ci and qi (& are the coordinates and TJi are the momenta; i = 1,2) 
can be chosen [l] in such a way that the solution corresponding to unperturbed motion may be written 
in the form 

5,W=~+51(0)* 111=52=v2=0 (1-l) 
and the Hamiltonian will be a 2n-periodic function of the coordinate 5,. 

The problem of the orbital stability of the unperturbed periodic motion is equivalent to the problem 
of stability with respect to perturbations of the variables -rh, c2, q2. 

Suppose the Hamiltonian depends on a parameter E and is analytic for sufficiently small values of 
that parameter. We shall also assume that when E = 0 the function I is independent of ci. 

Two characteristic exponents of the linearized equations of perturbed motion will always vanish. As 
regards the two others, we shall assume that when E = 0 they are pure imaginary numbers kio, where 
20 is close to an odd integer 2n + 1. Let us put 

2n+1-2w=2&CL (1.2) 

In the case of this second-order (parametric) resonance, the unperturbed periodic motion may be 
orbitally stable or unstable, with instability possibly observed already in the linearized equations of 
perturbed motion. However, this instability may turn out to be only local, since the trajectories of the 
perturbed motion do not necessarily depart to an unbounded distance from the trajectory of the 
unperturbed motion. They may remain perpetually in some bounded (though not infinitesimal) 
neighbourhood of that trajectory. The main aim of this paper is to derive estimates for the size of that 
neighbourhood. 

tPrik1. Mat. Mekh. Vol. 66, No. 1, pp. 24-32, 2002. 
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2. THE NORMAL FORM OF THE HAMILTONIAN OF 
PERTURBED MOTION AND ITS SIMPLIFICATION 

Let us express the Hamiltonian r of perturbed motion as a series in powers of ql, c2, Q, E. Then a 
suitable canonical change of variables cl, ql, 52, q2, + cpl, rl, q2, p2 2z-periodic in cpl and analytic in 
ql, c2, q2, E, may be used to annihilate all non-resonance terms in the part of the Hamiltonian that is 
quadratic in q2 andp2, completely annihilating terms of the third and also (when E = 0) the fifth degree 
in Irl 1 ‘h, q2,p2, and reducing terms of the fourth degree to a form such that, when E = 0, they depend 
only on rl and on the combination qi + pi. The Hamiltonian of the perturbed motion, normalized in 
this way, will be denoted by H. It has the following form (see [2]). 

+g E'H:"+O~ 
&=I 

(2.1) 

where cp = ?$?Jz + l)cp,, @) and J#’ are forms of degree four and five in Irl 1 ‘h, q2,p2 whose coefficients 
are 2%-periodic in cpl, and O6 denotes the totality of terms of degree at least six in Ir, I ‘h, q2,p2. The 
quantities h, x1, x2, czo, cll, co2 are constant coefficients, of which h, x1, x2 are represented by convergent 
series 

h = 0 + Eh”’ + &*h’*’ + ...) Xi = ,‘I’ +&x!*’ + I . ..( i=1,2 

Formulae defining the quantities cii and xy) in terms of the expansion coefficients of the initial Hamil- 
tonian r were obtained in [2]. 

If we now apply the canonical transformation 

q2 =tj2coscp+52sincp, p2 =-~,sincp+P2cos~ 

we obtain a Hamiltonian 

+@02(ij; + p,‘)’ + 5 ELfi;‘) + g E'fir' +06 
&=I &=I 

where Gik’ and I?sk) are the forms dakk’ and dsk) of (2.1), expressed in terms of the new variables, and 

6=a-w-EC)-..., u*o=c*o 

011 = Cl, - (2n + l)c20, ao* = c*o(n + l/2)2 - C] ,(n + l/2) + co* 

One more canonical transformation (with valence u~~(Ex)-~) 

‘PI =cJq, 4 = EX 1 a,* I-’ I, 

q2 = (2~ I ao2 I-’ p2 Jy2 sintV + wo), i4 = (2&x I a02 I-’ 132)’ coW + WO) 

where 

(2.3) 

x = (@ +x(1)* K 
2 ) ’ xi’) = xsin 2wo, x;’ =xcos2~o* W=oe,+~(I-0,x, 

(3 = signao2 

and a change to a new independent variable p = xt lead to the equations of perturbed motion with 
Hamiltonian 
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where 

H"' = c&I,, H”‘=-vp2+p2c0s28+p;+6,,f,p2+b,,/~ 

v = (5(0( - h”‘)x-’ , b,, =a,,~& bzo = azoa$ 
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(2.4) 

(2.5) 

Note that the quantity I1 may have any sign, but p2 2 0. The function Z@ is 4n-periodic in wl, 
2z-periodic in Q2 and is analytic in all its arguments for p2 > 0. 

If -1 < v c 1, the periodic motion (1.1) is orbitally unstable; if v G -1 or v > 1, it is stable [2]. 

3. THE APPROXIMATE SYSTEM 

If the last term is dropped in Hamiltonian (2.4), we arrive at an approximate system with Hamiltonian 
Z$‘) + s&Z(i). In this system Ii is constant (Zi = Z,(O)) and the variables C+ and p2 are described by the 
equations 

de2 _ & dP2 _ aY ---&- 
x- dp2 ’ dT 302 

(3.1) 

where 

y=-vp2+p2cos2e2+p;, G=v-!?,,I, (3.2) 

The quantity v in Hamiltonian (2.4) may be treated as a parameter characterizing the “resonance 
mismatch.” The quantity V in the function (3.2) also plays the role of a resonance mismatch. However, 
unlike v, which depends only on the parameters of the system being investigated, 5 also depends on 
the initial data (on Z,(O)). If bi, f 0, the resonance mismatch may be increased, decreased or even 
completely annihilated by a suitable choice of Ii(O). 

The system of equations (3.1) has been studied in detail previously (see [3, 41 and the references 
listed there). Its trajectories may be qualitatively different for different values of the parameter V, that 
is, the presence of a degree of freedom corresponding to the variables w1 and I, exerts a considerable 
influence on the behaviour of the solutions f&(z) and p2(~) of system (3.1). 

Phase portraits of system (3.1) in the x1, x2 plane, where x1 = (2p2)‘h cos e2,x2 = (2p2)‘h sin 02, are 
shown in Fig. l(a-c), for the cases J 6 -1, -1 < 3 6 1, V > 1, respectively. Depending on the value of 

(a) 
I x2 

@I (4 

Fig. 1 
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V, the system may have one, three or five singular points. The singular point for which x1 = x2 = 0 exists 
for any value of G. It corresponds to the unperturbed periodic motion (1.1). 

In what follows we will be interested only in domains of thexl,xz plane filled by trajectories encircling 
all the singular points of system (3.1). For any value of G, these trajectories correspond to positive values 
of the constant h of the integral 

‘y(P2v 02) = h 

Previous analysis [3,4] implies that, if the following condition holds at T = 0 

P2w<~r~- 

then for all z B 0 we have the inequality 

p2(Q<K[C+ l+&ljG] (3.5) 

The quantity a in inequalities (3.4) and (3.5) is a positive parameter (a = 4h, where h is the constant 
of the integral (3.3) corresponding to a closed trajectory encircling all the singular points of system (3.1); 
the right-hand sides of (3.4) and (3.5) are the minimum and maximum values of p2 on that trajectory). 

4. ACTION-ANGLE VARIABLES 

Let us return now to the exact equations of perturbed motion as defined by Hamiltonian (2.4), writing 
it in terms of the new variables Ii and wi (i = 1,2), which are action-angle variables for the approximate 
system. Since w1 is a cyclic coordinate in the approximate system, one pair of such variables is I, and 
wl. Denote Hamiltonian (2.4), written in terms of the variables Ii and wi, by F 

F= F’O’(/,)+EF”‘(I,,12)+E’~‘2’(/*,12.W,rW2;E~) 

where F(O) is the function I!&‘) of (2.5) 

(4.1) 

and Cp is the function (3.2) written in terms of the new variables; it is the inverse of the function 

/z(h) =&, p2@,,h)de (4.2) 

where p2 is the value of the momentum p2 on trajectories of the approximate system for h > 0; the 
dependence of p2 on 1, is not shown in (4.2). 

The function F is 47c-periodic in w1 and 2n-periodic in w2; for I2 > 0 it is analytic in II, 12, wl, w2, &. 

5. THE VARIABLES I, AND I2 HAVE NO EVOLUTION 

When E = 0 the Hamiltonian (4.1) depends only on one of the “action” variables (namely, I,), so that 
we have proper degeneracy [5]. When 0 c E 6 1, however, the degeneracy is removed, and the variables 
I1 and 12 in the perturbed system always remain near their initial values. Indeed, one can verify 
(see below) that Hamiltonian (4.1) satisfies the conditions 

aF’O’ f o 

al,’ 
aF”’ f o a2P f o 

2’2 ’ ai,2 (5.1) 

and therefore [5], for most initial data, the motion in the perturbed system will be conditionally periodic. 
Only a fraction O(exp(-c,e-‘)) where cl = const > 0, of the phase space is not filled by conditionally 
periodic trajectories. Moreover, for all initial data the quantities Ii(z) (i = 1,2) are close to their initial 
values 

)/,{7) - li (O>l < c2E (~2 = const) (5.2) 
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The truth of the first condition of (5.1) follows at once from (2.5) and (4.1), since dF(‘)/d1i = 
ox-’ f 0. The second inequality in (5.1) is also true, because %‘(‘)/81, is the frequency, divided by E, 

of motion along the closed trajectory considered in Fig. 1, which is, of course non-zero. As regards 
d2F(“& in the third condition of (5.1), it follows from (3.3) and (4.2) that 

(5.3) 

The integrand in (5.3) is positive on the closed trajectories under consideration, which encircle all 
the singular points of system (3.1) in Fig. 1. Hence it follows that the third condition of (5.1) is also 
true. This proves the assertion that the quantities Ii and Z2 have no evolution. 

6. ESTIMATES OF r,(t) AND q;(t) + pi(t) IN 
THE CASE WHEN bll = 0 

It follows from inequality (5.2) and formulae (2.2) and (2.3) for the replacement of variables that, for 
all t > 0 

r’+1/,(2n+l)(q; +p3=&xIa()2 I-’ I, =EXlu02 I-’ (1,(0)+0(E)) (6.1) 

Hence we may conclude that rl + ‘/4(2n + l)(q$ + pi) is “almost an integral” of the equations of 
perturbed motion, in the sense that for all t > 0 it differs from its initial value by a quantity of order 
of magnitude at least two in E, provided that r,(O) and q:(O) + pi(O) are of order of magnitude at least 
one. 

With relation (6.1) available, the derivation of an estimate for the size of the neighbourhood in which 
there are trajectories of perturbed motion reduces to finding estimates for the quantity q;(t) + pi(t). 

We will first consider the case when the coefficient bii in Hamiltonian (2.4) vanishes. In that case, 
by the second equality of (3.2), we have 5 = v. Then, taking into account that I&) = 12(0) + O(E) for 
all initial data, (see inequality (5.2)), we deduce from formulae (2.3) and inequalities (3.4) and (3.5) 
that if 

(6.2) 

then for all t 2 0 

(6.3) 

where $ are positive numbers of the same order of magnitude as x = &i-s (0 < p < 1). 
Inequalities (6.2) and (6.3) yield a one-parameter family of estimates. The parameter is the 

number a. 

7. THE NON-LOCAL STABILITY OF FAST PLANAR ROTATIONS OF 
A RIGID BODY IN THE KOVALEVSKAYA CASE 

Consider a rigid body of weight mg rotating about a fixed point 0. The axes of a coordinate system 
Oxyz fixed in the body are directed along the principal axes of inertia about 0. The corresponding 
principal moments of inertia are denoted by A, B and C. Let the geometry of the masses of the 
body correspond to the Kovalevskaya case. Then, setting B = C = 2A, we may assume that the centre 
of gravity is on the Oz axis. The distance from the centre of gravity to the fixed point 0 is denoted 
by 1. 

Let us assume that the projection of the angular momentum of the body onto the vertical is zero. 
The body may perform pendulum-like rotations about the Ox axis, which is in a fixed horizontal position. 
Suppose the mean angular velocity Sz of this rotation is so large that the dimensionless quantity 
E = mg&4sL2) may be considered to be a small parameter. It has been shown [6, 71 that in the 
Kovalevskaya case such planar rotations of a rigid body are orbitally unstable. An estimate for the size 
of the neighbourhood of the planar rotation in which the trajectories of the perturbed motion always 
remain may be obtained, by using the fact that the equations of motion are completely integrable (using 
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the Kovalevskaya integral). Here, to illustrate the algorithm of Section 7, we will derive this estimate 
for sufficiently small a. 

As canonical conjugate variables we take Andoyer variables [8]. The generalized momenta, 
transformed to dimensionless form using the factor AQ, are denoted by RI and R2 (R, is the absolute 
value of the angular momentum and R2 its projection onto the Oz) axis; the corresponding generalized 
coordinates are denoted by w1 and wz, and the independent variable is taken to be z = Qt. The 
Hamiltonian has the form 

H=~(R:-R,2)(1+sin2Wz)+~R22-EJ~cosW, (7.1) 

In the aforementioned rotations of the body, v2 = n/2, R2 = 0, and the variation of the variables 
w1 and RI is described by equations with Hamiltonian ho = ‘/2 Rf - E cos ye. In terms of the variables 
x1 and Xi introduced [4] by the canonical transformation 

WI = xl + &Xiv2 sin xl + O(E~), R, = X, +&X,-’ cosx, + O(E~) 

we have ho = ‘/2 Xl + O(E~), and the planar rotation of the body is given by the equations 

x,(r) = (1 + O(E*))T + x,(o), x, = 1, yf2 = x/2 R2 = 0 

We introduce perturbations of Yi, x2, Y2 by the formulae 

X, = 1 - Y,. \y2 = n/2 +x2, R2 =-Y, 

The Hamiltonian of the perturbed motion may be expressed as a series 

H = v, +-$; + Y;-)++osx,(x; - Y&&(x; +3x;Y; +6&x,2 +6y,*)+... (7.2) 

where the dots stand for the totality of terms of degree more than five in ] Y, ] ‘h, x2, Y2. Terms of order 
not less than the second and first in E, which will not be needed in what follows, are omitted from the 
terms of the second and fourth degree, respectively, in expansion (7.2). It is obvious from (7.2) that 
there is a second-order resonance; in the notation of Section 1, we have w = l/2, n = 0, a = 0. 

A canonical change of variables via the formulae 

x, =x;, 6 = Y’- ~&cosX;(X;* - y;*> 

x2 =x4 -J$Esinx;Y;, Y2 = Y;-j/,&sinx;x; 

reduces the first three terms in (7.2) (which correspond to the linearized equations of perturbed motion) 
to normal form. One further non-linear change of variables xi, x;, Y;, Y; + cpl, q2, rl, p2, close to the 
identical transformation, of the same type of Birkhoff’s transformation, yields the normal form of the 
term of fourth degree in ( Y; ( ‘h, xi, Y;. As a result we arrive at Hamiltonian (2.1) with 

x\‘)=o, $=-t/2, h(‘)=o, c20=c,*=2c02=-~. 

By the formulae of Section 2, we find that x = f/, v = 0, b,i = 0. Also, by relations (6.2) and (6.3) 
we see that if for l = 0 

then, for all t, we have the estimate 

It now follows from (6.1) that 

I ‘I 0) - r, (0) I< 2&(4 + u + O(x)) 
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8. ESTIMATES IN THE CASE WHEN b,, # 0 

The estimates given by inequalities (6.2) and (6.3) remain valid when bii f 0, except that v in these 
inequalities must be replaced by the quantity 3 defined by the second equality of (3.2). 

Taking into consideration that, by inequality (5.2), Ii = It(O) + O(E), we may write the second equality 
of (3.2) in the form V = v - billi + O(E). Using the transformation formulae (2.2) and (2.3) and 
introducing the notation 

$0) = EX Ia02 I-' -et), q;(t)+ p;(r) = &xl a02 I-' y(r), x(O) = x0, y(0) = YI-J (8.1) 

we see that, with an error of order E, 

The quantity x may have any sign, but y > 0. 
Suppose the parameters of the material system under investigation are given. Consequently, the 

quantities n, v and 6it on the right-hand side of (8.2) are also given. Now fix some positive value of the 
parameter a and consider the inequality 

y,<v-l+ (v-l) +a r (8.3) 
where V is given by formula (8.2). In the half-plane y,-, > 0, inequality (8.3) will hold in some domain G. 
Suppose the initial date are such that x0 = xi, y. = yi, and the point (xi, yi) lies in G together with its 
X-neighbourhood. It then follows from inequalities (6.2) that for these initial data, for all t L 0, we have 

y(r)cv*+I+~(v*+l>2+a+62 (8.4) 

on the trajectory of perturbed motion, where v’ is the value of the function 3 in (8.2) evaluated at the 
point (xi, yt). 

9. THE QUESTION OF THE BOUNDEDNESS OF THE ORBITS 
OF ASTEROIDS IN THE HESTIA GAP 

The distribution of asteroids according to their mean motions within the main asteroid belt, which lies 
between the orbits of Mars and Jupiter, is not uniform: there are intervals of distribution in which there 
are few asteroids or even none at all [9]. These intervals are known as gaps. For these gaps in the asteroid 
belt, the ratio of the mean motion of the asteroid to the mean motion of Jupiter is approximately a 
rational number 1: s. For asteroids in the Hestia gap this ratio is 3 : 1. The number 1 - s is known as 
the order of resonance, so that in the case of the asteroids of the Hestia gap one has the kind of resonance 
studied in this article - second-order resonance. 

We shall simulate asteroid orbits by means of periodic Poincare solutions of the first kind of the 
restricted circular three-body problem. Following Section 8, we shall estimate the size of the domain 
in which perturbed orbits are bounded near the unperturbed Poincart orbits. 

The units of measurement will be chosen so that the period of Jupiter’s revolution, the distance 
between the Sun and Jupiter, and the sum of their masses are equal to unity. Jupiter’s mass is denoted 
by E. When E = 0 the Poincare orbits become circular orbits of radius Ro. For asteroids in the Hestia 
gap R. = 9-‘b = 0.48075. The family of periodic Poincare solutions depends (see, for example [lo]) on 
one essential parameter hi (the quantity Ehi is equal, with an error of order E’, to the difference between 
the constants of the energy integral in the Poincare orbit and in the generating circular orbit). The normal 
form (2.1) of the Hamiltonian of perturbed motion in the neighbourhood of periodic Poincare motions 
at second-order resonance was obtained in [lo], where the meaning of the quantities rl, q2 andpz was 
also described. One can say that the perturbations q2 andp2 characterize the magnitude of the radial 
displacement and radial velocity, while rl is the magnitude of the perturbation of the transversal velocity 
of the asteroid in a synodic coordinate system. 

Computations using the formulae developed in [lo] for the coefficients of the normal form show that 

h = x + ~(-0.23747 + I .62253/r,) + 0(s2) 

%I” = 0, x:” = 0.86356, c20 = xc,, = co2 = -3.24506 
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L- I I 

0 x0 

Fig. 2 

The formulae of Section 2 now yield 

a20 = -al, = ‘ho2 =-3.24506, x=0.86356, o=-1, bi, =-4 

and expression (8.2) becomes 

G= qxg,ya)= v+4x, +3y, (9.1) 

The domain G is defined by relations (8.3) and (9.1). It is illustrated schematically in Fig. 2, with the 
part of the half-plane y. = 0 not belonging to G shown hatched. The boundary of G is the straight line 
y. = 0 and the hyperbola 

x0 =-(5y;+a)l(8yo)+(v-1) 

Suppose the initial values of rl, q2 and p2 are such that the point (x{, yi), where 

_x; = 0.939445&%i(O), y; = 0.939445E-‘(q;(o)+ pi(O)) (9.2) 

lies inside the domain G and its distance from the latter’s boundary is not less than x. Then for all 
t 2 0, 

q;(t)+ pi(t) < I .06447&[V’ + I+ J(v’ + 1)2 + a + 821 

where v’ is the value of the function (9.1) at the point (x&y;) with coordinates (9.2). 
The estimate for rl(t) may now be derived from (6.1). 
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